Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Genes (Basel) ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38540362

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT), also called Rendu-Osler syndrome, is a group of rare genetic diseases characterized by autosomal dominance, multisystemic vascular dysplasia, and age-related penetrance. This includes arteriovenous malformations (AVMs) in the skin, brain, lung, liver, and mucous membranes. The correlations between the phenotype and genotype for HHT are not clear. An HHT Chinese pedigree was recruited. Whole exome sequencing (WES) analysis, Sanger verification, and co-segregation were conducted. Western blotting was performed for monitoring ENG/VEGFα signaling. As a result, a nonsense, heterozygous variant for ENG/CD105: c.G1169A:p. Trp390Ter of the proband with hereditary hemorrhagic telangiectasia type 1 (HHT1) was identified, which co-segregated with the disease in the M666 pedigree. Western blotting found that, compared with the normal levels associated with non-carrier family members, the ENG protein levels in the proband showed approximately a one-half decrease (47.4% decrease), while levels of the VEGFα protein, in the proband, showed approximately a one-quarter decrease (25.6% decrease), implying that ENG haploinsufficiency, displayed in the carrier of this variant, may affect VEGFα expression downregulation. Pearson and Spearman correlation analyses further supported TGFß/ENG/VEGFα signaling, implying ENG regulation in the blood vessels. Thus, next-generation sequencing including WES should provide an accurate strategy for gene diagnosis, therapy, genetic counseling, and clinical management for rare genetic diseases including that in HHT1 patients.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Endoglin/genetics , Endoglin/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Genotype , Heterozygote , China
2.
Ann Med ; 56(1): 2325480, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38466911

ABSTRACT

INTRODUCTION: Effect of physical activity in pregnancy on preeclampsia (PE) and angiogenic markers is not well understood. We studied the association of physical activity and PE in a case-control setting and assessed whether exercise in PE and non-PE women associate with maternal serum concentrations of soluble fms-like tyrosine kinase 1 (s-Flt-1), placental growth factor (PlGF) and soluble endoglin (sEng) and sFlt-1/PlGF ratio in the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC) cohort. MATERIALS AND METHODS: Participants completed a questionnaire on their background information and serum samples were collected from a subset. Questionnaire data on physical activity were available from 708 PE women and 724 non-PE women. Both first trimester serum samples and questionnaire data on physical activity were available from 160 PE women and 160 non-PE women, and second/third trimester serum samples and questionnaire data on physical activity were available from 139 PE women and 47 non-PE women. The PE and non-PE women were divided into categories of physically active (exercise 2 - 3 times/week or more) and physically inactive (exercise less than 2 - 3 times/week). RESULTS: A total of 43.4% of the PE women and 42.4% of the non-PE women were categorized as physically active. There were no differences in physical activity and exercise habits between the groups. The physically active women were more often nulliparous and non-smokers and had a lower body mass index. There were no differences in the concentrations of angiogenic markers (sFlt-1, PlGF and sEng and sFlt-1/PlGF ratio) between the groups who exercised more or less than 2 - 3 times/week. CONCLUSIONS: In the FINNPEC study cohort, there was no association between physical activity and PE and no associations of physical activity in pregnant women with and without PE with maternal serum concentrations of sFlt-1, PlGF and sEng and sFlt-1/PlGF ratio.


This is the first study to investigate the association of physical activity in pregnancy with concentrations of angiogenic markers while comparing pregnant women with and without preeclampsia.There were no differences in the physical activity and exercise habits in pregnancy between women with and without preeclampsia in the FINNPEC cohort.Physical activity of pregnant women with or without preeclampsia did not associate with the concentrations of angiogenic markers (sFlt-1, PlGF and sEng and sFlt-1/PlGF ratio).


Subject(s)
Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/genetics , Placenta Growth Factor , Finland/epidemiology , Biomarkers , Endoglin/genetics , Exercise , Vascular Endothelial Growth Factor Receptor-1
3.
Eur J Med Genet ; 68: 104919, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355093

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, is a dominant inherited vascular disorder. The clinical diagnosis is based on the Curaçao criteria and pathogenic variants in the ENG and ACVRL1 genes are responsible for most cases of HHT. Four families with a negative targeted gene panel and selected by a multidisciplinary team were selected and whole-genome sequencing was performed according to the recommendations of the French National Plan for Genomic Medicine. Structural variations were confirmed by standard molecular cytogenetic analysis (FISH). In two families with a definite diagnosis of HHT, we identified two different paracentric inversions of chromosome 9, both disrupting the ENG gene. These inversions are considered as pathogenic and causative for the HHT phenotype of the patients. This is the first time structural variations are reported to cause HHT. As such balanced events are often missed by exon-based sequencing (panel, exome), structural variations may be an under-recognized cause of HHT. Genome sequencing for the detection of these events could be suggested for patients with a definite diagnosis of HHT and in whom no causative pathogenic variant was identified.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Mutation , Endoglin/genetics , Base Sequence , Chromosomes, Human, Pair 9/genetics , Activin Receptors, Type II/genetics
4.
Clin Genet ; 105(5): 543-548, 2024 05.
Article in English | MEDLINE | ID: mdl-38225712

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant form of vascular dysplasia. Genetic diagnosis is made by identifying loss-of-function variants in genes, such as ENG and ACVRL1. However, the causal mechanisms of various variants of unknown significance remains unclear. In this study, we analyzed 12 Japanese patients from 11 families who were clinically diagnosed with HHT. Sequencing analysis identified 11 distinct variants in ACVRL1 and ENG. Three of the 11 were truncating variants, leading to a definitive diagnosis, whereas the remaining eight were splice-site and missense variants that required functional analyses. In silico splicing analyses demonstrated that three variants, c.526-3C > G and c.598C > G in ACVRL1, and c.690-1G > A in ENG, caused aberrant splicing, as confirmed by a minigene assay. The five remaining missense variants were p.Arg67Gln, p.Ile256Asn, p.Leu285Pro, and p.Pro424Leu in ACVRL and p.Pro165His in ENG. Nanoluciferase-based bioluminescence analyses demonstrated that these ACVRL1 variants impaired cell membrane trafficking, resulting in the loss of bone morphogenetic protein 9 (BMP9) signal transduction. In contrast, the ENG mutation impaired BMP9 signaling despite normal cell membrane expression. The updated functional analysis methods performed in this study will facilitate effective genetic testing and appropriate medical care for patients with HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Endoglin/genetics , Japan/epidemiology , Mutation , Genetic Testing , Activin Receptors, Type II/genetics
5.
Traffic ; 25(1): e12928, 2024 01.
Article in English | MEDLINE | ID: mdl-38272447

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder affecting 1 in 5000-8000 individuals. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is the most common HHT and manifests as diverse vascular malformations ranging from mild symptoms such as epistaxis and mucosal and cutaneous telangiectases to severe arteriovenous malformations (AVMs) in the lungs, brain or liver. HHT1 is caused by heterozygous mutations in the ENG gene, which encodes endoglin, the TGFß homodimeric co-receptor. It was previously shown that some endoglin HHT1-causing variants failed to traffic to the plasma membrane due to their retention in the endoplasmic reticulum (ER) and consequent degradation by ER-associated degradation (ERAD). Endoglin is a homodimer formed in the ER, and we therefore hypothesized that mixed heterodimers might form between ER-retained variants and WT protein, thus hampering its maturation and trafficking to the plasma membrane causing dominant negative effects. Indeed, HA-tagged ER-retained mutants formed heterodimers with Myc-tagged WT endoglin. Moreover, variants L32R, V105D, P165L, I271N and C363Y adversely affected the trafficking of WT endoglin by reducing its maturation and plasma membrane localization. These results strongly suggest dominant negative effects exerted by these ER-retained variants aggravating endoglin loss of function in patients expressing them in the heterozygous state with the WT allele. Moreover, this study may help explain some of the variability observed among HHT1 patients due to the additional loss of function exerted by the dominant negative effects in addition to that due to haploinsufficiency. These findings might also have implications for some of the many conditions impacted by ERAD.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Alleles , Endoglin/genetics , Endoplasmic Reticulum/metabolism , Mutation , Receptors, Cell Surface/genetics , Receptors, Growth Factor , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/metabolism
6.
Commun Biol ; 7(1): 112, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242992

ABSTRACT

Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.


Subject(s)
Endoglin , Neuropilin-1 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Endoglin/genetics , Endoglin/metabolism , Endothelial Cells/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Signal Transduction
7.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603052

ABSTRACT

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Subject(s)
Frameshift Mutation , Telangiectasia, Hereditary Hemorrhagic , Humans , Endoglin/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Epistaxis , Mutation , China
8.
Eur J Intern Med ; 119: 99-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689549

ABSTRACT

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disease inherited in an autosomal dominant manner. Disease-causing variants in endoglin (ENG) and activin A receptor type II-like 1 (ACVRL1) genes are detected in around 90% of the patients; also 2% of patients harbor pathogenic variants at SMAD4 and GDF2. Importantly, the genetic cause of 8% of patients with clinical HHT remains unknown. Here, we present new putative genetic drivers of HHT. METHODS: To identify new HHT genetic drivers, we performed exome sequencing of 19 HHT patients and relatives with unknown HHT genetic etiology. We applied a multistep filtration strategy to catalog deleterious variants and prioritize gene candidates based on their known relevance in endothelial cell biology. Additionally, we performed in vitro validation of one of the identified variants. RESULTS: We identified variants in the INHA, HIF1A, JAK2, DNM2, POSTN, ANGPTL4, FOXO1 and SMAD6 genes as putative drivers in HHT. We have identified the SMAD6 p.(Glu407Lys) variant in one of the families; this is a loss-of-function variant leading to the activation of the BMP/TGFß signaling in endothelial cells. CONCLUSIONS: Variants in these genes should be considered for genetic testing in patients with HHT phenotype and negative for ACVRL1/ENG mutations.


Subject(s)
Endothelial Cells , Telangiectasia, Hereditary Hemorrhagic , Humans , Endothelial Cells/pathology , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Mutation , Genetic Testing , Endoglin/genetics , Activin Receptors, Type II/genetics
10.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(9): 916-920, 2023 Sep 12.
Article in Chinese | MEDLINE | ID: mdl-37670645

ABSTRACT

Objective: To explore the genetic characteristics of a family with hereditary hemorrhagic telangiectasia (HHT) caused by endoglin (ENG) gene mutations. Methods: A total of 17 individuals from a 3-generation HHT family attending the First Affiliated Hospital of Dali University were selected as the research subjects. Clinical data and familial disease status of the HHT family proband were collected. Whole exome sequencing technology was used to screen for suspected pathogenic genes in the proband, and Sanger sequencing was used for family validation. Results: The proband and her mother had recurrent epistaxis and skin mucosal telangiectasia, and enhanced CT scans of the chest of the proband and her mother, daughter, and cousin indicated the presence of varying degrees of pulmonary arteriovenous malformations. The results of the full exon sequencing results showed that the proband carried the ENG gene c.579_599del non-shift deletion mutation, and Sanger sequencing showed that the mother, daughter, and cousin carried the same mutation. Conclusion: ENG gene c.579_ 599del mutation may be the genetic basis of HHT in this family.


Subject(s)
Endoglin , Telangiectasia, Hereditary Hemorrhagic , Female , Humans , Endoglin/genetics , Hospitals , Mutation , Pedigree
11.
J Leukoc Biol ; 114(6): 639-650, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37555392

ABSTRACT

The transforming growth factor ß (TGF-ß)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-ß/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-ß/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/therapeutic use , Neutrophils/metabolism , Endoglin/genetics , Endoglin/metabolism , Endothelial Cells/metabolism , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/therapeutic use , Transforming Growth Factor beta , Signal Transduction/genetics
12.
J Pediatr ; 263: 113665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37572862

ABSTRACT

OBJECTIVE: To assess the utility of the Curaçao criteria by age over time in children with hereditary hemorrhagic telangiectasia (HHT). STUDY DESIGN: This was a single-center, retrospective analysis of patients attending the HHT clinic at the Hospital for Sick Children (Toronto, Canada) between 2000 and 2019. The evaluation of the Curaçao criteria was completed during initial and follow-up visits. Screening for pulmonary and brain arteriovenous malformations was completed at 5 yearly intervals. RESULTS: A total of 116 patients with genetic confirmation of HHT were included in the analysis. At initial screening at a median (IQR) age of 8.4 (2.8, 12.9) years, 41% met criteria for a definite clinical diagnosis (≥3 criteria). In children <6 years at presentation, only 23% fulfilled at least 3 criteria initially. In longitudinal follow-up, 63% reached a definite clinical diagnosis, with a median (IQR) follow-up duration of 5.2 (3.2, 7.9) years (P = .005). Specifically, more patients met the epistaxis and telangiectasia criteria at last visit compared with initial (79% vs 60%; P = .006; 47% vs 30%; P = .02) but not for the arteriovenous malformation criterion (59% vs 57%; P = .65). CONCLUSIONS: In the pediatric population, most patients do not meet definite clinical criteria of HHT at initial presentation. Although the number of diagnostic criteria met increased over time, mainly due to new onset of epistaxis and telangiectasia, accuracy remained low during follow-up visits. Relying solely on clinical criteria may lead to underdiagnosis of HHT in children.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Child , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Retrospective Studies , Curacao , Epistaxis/etiology , Mutation , Endoglin/genetics , Activin Receptors, Type II/genetics , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics
13.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37432984

ABSTRACT

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Biomarkers , Cell Line, Tumor , Endoglin/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
14.
Dis Model Mech ; 16(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37264878

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease caused by mutations affecting components of bone morphogenetic protein (BMP)/transforming growth factor-ß (TGF-ß) signaling in endothelial cells. This disorder is characterized by arteriovenous malformations that are prone to rupture, and the ensuing hemorrhages are responsible for iron-deficiency anemia. Along with activin receptor-like kinase (ALK1), mutations in endoglin are associated with the vast majority of HHT cases. In this study, we characterized the zebrafish endoglin locus and demonstrated that it produces two phylogenetically conserved protein isoforms. Functional analysis of a CRISPR/Cas9 zebrafish endoglin mutant revealed that Endoglin deficiency is lethal during the course from juvenile stage to adulthood. Endoglin-deficient zebrafish develop cardiomegaly, resulting in heart failure and hypochromic anemia, which both stem from chronic hypoxia. endoglin mutant zebrafish display structural alterations of the developing gills and underlying vascular network that coincide with hypoxia. Finally, phenylhydrazine treatment demonstrated that lowering hematocrit/blood viscosity alleviates heart failure and enhances the survival of Endoglin-deficient fish. Overall, our data link Endoglin deficiency to heart failure and establish zebrafish as a valuable HHT model.


Subject(s)
Heart Failure , Telangiectasia, Hereditary Hemorrhagic , Animals , Endoglin/genetics , Endoglin/metabolism , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/genetics , Zebrafish , Endothelial Cells/metabolism , Heart Failure/metabolism , Activin Receptors, Type II/genetics
15.
Dis Model Mech ; 16(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36861761

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling. Adult endoglin mutant zebrafish developed skin AVMs, retinal vascular abnormalities and cardiac enlargement. Embryonic endoglin mutants developed an enlarged basilar artery (similar to the previously described enlarged aorta and cardinal vein) and larger numbers of endothelial membrane cysts (kugeln) on cerebral vessels. Vegf inhibition prevented these embryonic phenotypes, leading us to investigate specific Vegf signalling pathways. Inhibiting mTOR or MEK pathways prevented abnormal trunk and cerebral vasculature phenotypes, whereas inhibiting Nos or Mapk pathways had no effect. Combined subtherapeutic mTOR and MEK inhibition prevented vascular abnormalities, confirming synergy between these pathways in HHT. These results indicate that the HHT-like phenotype in zebrafish endoglin mutants can be mitigated through modulation of Vegf signalling. Combined low-dose MEK and mTOR pathway inhibition could represent a novel therapeutic strategy in HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Animals , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/genetics , Zebrafish/metabolism , Endoglin/genetics , Vascular Endothelial Growth Factor A/genetics , Arteriovenous Malformations/genetics , TOR Serine-Threonine Kinases , Mitogen-Activated Protein Kinase Kinases/genetics , Activin Receptors, Type II/genetics , Mutation/genetics
16.
Genes (Basel) ; 14(3)2023 03 22.
Article in English | MEDLINE | ID: mdl-36981042

ABSTRACT

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disease inherited in an autosomal dominant manner. Disease-causing variants in endoglin (ENG) and activin A receptor type II-like 1 (ACVRL1) genes are detected in more than 90% of the patients undergoing molecular testing. The identification of variants of unknown significance is often seen as a challenge in clinical practice that makes family screening and genetic counseling difficult. Here, we show that the implementation of cDNA analysis to assess the effect of splice site variants on mRNA splicing is a powerful tool. METHODS: Gene panel sequencing of genes associated with HHT and other arteriovenous malformation-related syndromes was performed. To evaluate the effect of the splice site variants, cDNA analysis of ENG and ACVRL1 genes was carried out. RESULTS: three novel splice site variants were identified in ENG (c.68-2A > T and c.1311+4_1311+8del) and ACVLR1 (c.526-6C > G) genes correspondingly in three individuals with HHT that met ≥ 3 Curaçao criteria. All three variants led to an aberrant splicing inducing exon skipping (ENG:c.68-2A > T and ACVRL1:c.526-6C > G) or intron retention (ENG:c.1311+4_1311+8del) allowing the confirmation of the predicted effect on splicing and the reclassification from unknown significance to pathogenic/likely pathogenic of two of them. CONCLUSIONS: RNA analysis should be performed to assess and/or confirm the impact of variants on splicing. The molecular diagnosis of HHT patients is crucial to allow family screening and accurate genetic counseling. A multidisciplinary approach including clinicians and geneticists is crucial when dealing with patients with rare diseases.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , DNA, Complementary , Mutation , Endoglin/genetics , Exons/genetics , Activin Receptors, Type II/genetics
17.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902347

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by aberrant angiogenesis and vascular malformations. Mutations in the transforming growth factor beta co-receptor, endoglin (ENG), account for approximately half of known HHT cases and cause abnormal angiogenic activity in endothelial cells (ECs). To date, how ENG deficiency contributes to EC dysfunction remains to be fully understood. MicroRNAs (miRNAs) regulate virtually every cellular process. We hypothesized that ENG depletion results in miRNA dysregulation that plays an important role in mediating EC dysfunction. Our goal was to test the hypothesis by identifying dysregulated miRNAs in ENG-knockdown human umbilical vein endothelial cells (HUVECs) and characterizing their potential role in EC function. We identified 32 potentially downregulated miRNAs in ENG-knockdown HUVECs with a TaqMan miRNA microarray. MiRs-139-5p and -454-3p were found to be significantly downregulated after RT-qPCR validation. While the inhibition of miR-139-5p or miR-454-3p had no effect on HUVEC viability, proliferation or apoptosis, angiogenic capacity was significantly compromised as determined by a tube formation assay. Most notably, the overexpression of miRs-139-5p and -454-3p rescued impaired tube formation in HUVECs with ENG knockdown. To our knowledge, we are the first to demonstrate miRNA alterations after the knockdown of ENG in HUVECs. Our results indicate a potential role of miRs-139-5p and -454-3p in ENG-deficiency-induced angiogenic dysfunction in ECs. Further study to examine the involvement of miRs-139-5p and -454-3p in HHT pathogenesis is warranted.


Subject(s)
Endoglin , MicroRNAs , Telangiectasia, Hereditary Hemorrhagic , Humans , Endoglin/genetics , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/genetics , Signal Transduction , Telangiectasia, Hereditary Hemorrhagic/genetics
18.
J Int Med Res ; 51(3): 3000605231159545, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36891821

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disease. ENG and ACVRL1 gene variants account for up to 96% of all cases, while the remaining cases are caused by SMAD4 or GDF2 variants, or by currently undiscovered mutations in coding or non-coding regions. Here, we report a 47-year-old man who presented with duodenal bulb bleeding and chronic anemia. Physical examination also revealed bleeding from the skin and gingiva. His parents were cousins and one brother and one sister died in infancy from anemia and bleeding. Head computed tomography angiography (CTA) revealed a complete fetal posterior cerebral artery located in the left side, and pulmonary CTA showed pulmonary arterial hypertension. The patient was diagnosed with HHT. Peripheral blood was collected for whole-exome sequencing. Sequencing revealed a mutation in the GDF2 gene, which encodes bone morphogenetic protein-9 (BMP-9). The detected variant, c.352A > T(p.Ile118Phe), was predicted to be a neutral polymorphism; however, the patient's plasma BMP-9 levels were greatly reduced; we predicted that this might be caused by the GDF2 variant and might be involved in the HHT pathogenesis. Further research in cell lines and animal models is needed to verify the correlation between this GDF2 variant and the pathogenesis of HHT.


Subject(s)
Growth Differentiation Factor 2 , Telangiectasia, Hereditary Hemorrhagic , Animals , Male , Endoglin/genetics , Endoglin/metabolism , Growth Differentiation Factor 2/genetics , Mutation, Missense , Telangiectasia, Hereditary Hemorrhagic/diagnostic imaging , Telangiectasia, Hereditary Hemorrhagic/genetics
20.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769077

ABSTRACT

Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor ß co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Animals , Mice , Genetic Therapy/methods , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/pathology , Endoglin/genetics , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...